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Abstract. This study investigates coefficient bias and heteroscedasticity resulting from
scale differences in accounting levels-based research designs analytically and using
simulations based on accounting data. Findings indicate that including a scale proxy as
an independent variable is more effective than deflation at mitigating coefficient bias,
even if the proxy is 95 percent correlated with the true scale factor. In fact. deflation can
worsen coefficient bias. Also, deflation often does not noticeably reduce heteroscedas-
ticity and can decrease estimation efficiency. White (1980) standard errors are close to
the true ones in regressions using undeflated variables. Replications of specifications in
three recent accounting studies confirm the simulation findings. The findings suggest
that when scale differences are of concern, accounting researchers should include a
scale proxy as an independent variable and report inferences based on White standard
erTors.

Résumé. Les auteurs examinent, tant sur le plan analytique qu’au moyen de simulations
basées sur les données comptables, la distorsion des coefficients et I’hétéroscédasticité
résultant des différences d’échelle dans les plans de recherche comptable basés sur les
niveaux. Leurs constatations révélent que I’inclusion d’un substitut d’échelle a titre de vari-
able indépendante est plus efficace que la déflation pour atténuer la distorsion relative au
coefficient, méme si le substitut présente une corrélation de 95 pour cent avec le véritable
facteur d’échelle. En fait, la déflation peut accentuer la distorsion relative au coefficient.
Aussi, il arrive souvent que la déflation, sans réduire de fagon appréciable 1’hétéroscédas-
ticité, puisse diminuer I’efficience de 1’estimation. Les erreurs-types de White (1980) se
rapprochent des erreurs véritables dans les régressions faisant appel a des variables non
déflatées. La répétition des mémes caractéristiques dans trois études comptables récentes
confirme les résultats de la simulation. Les conclusions de 1’étude donnent a penser que
lorsque les différences d’échelle sont sujet de préoccupation, les chercheurs en comptabil-
ité devraient faire intervenir un substitut d’échelle a titre de variable indépendante et for-
muler les inférences a partir des erreurs-types de White.
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528 Contemporary Accounting Research

There is a large and growing number of accounting research studies using lev-
els-based designs (e.g., Bowen 1981; Daley 1984; Olsen 1985; Landsman
1986; Magliolo 1986; Harris and Ohlson 1987; Beaver, Eger, Ryan, and
Wolfson 1989; Barth, Beaver, and Stinson 1991; Shevlin 1991; Kothari and
Zimmerman 1995; Barth 1991, 1994; Barth, Beaver, and Landsman 1992,
1996; among others).! Two econometric issues in such studies are cross-sec-
tional scale differences among sample firms that can result in biased coefficient
estimates and heteroscedastic regression errors that can cause biased standard
error estimates and estimation inefficiency. Scale differences arise because
large (small) firms have large (small) values of many variables. These differ-
ences can result in heteroscedastic regression error variances and, if the mag-
nitude differences are unrelated to the research question, scale-related coeffi-
cient bias. We focus on scale not because it is the only cross-sectional estima-
tion issue, but because it is a pervasive and potentially important one.

We seek to provide evidence on the extent of scale-related econometric
problems in accounting research contexts and the effectiveness of available
remedies. We consider three primary available remedies for scale-related prob-
lems: deflating regression variables by a scale proxy, including a scale proxy as
an independent variable, and using White (1980) heteroscedasticity-consistent
standard error estimates. The econometrics literature provides theoretical guid-
ance on the scale-related problems we investigate, but the guidance often is
based on theoretical distributions and asymptotic properties. We use simula-
tions based on CompusTaT firms and accounting data to mimic samples, empir-
ical distributions of accounting variables, and estimation equation specifica-
tions typical in empirical financial accounting research. Although our analyti-
cal development is general, our selection of accounting and scale variables is
motivated by regressions of, for example, market value of equity on net income
or book value of equity. Our objective is to aid accounting researchers in devel-
oping effective research designs and in interpreting findings of accounting
studies that use levels-based designs.?

As part of our analysis, we (1) develop expressions for coefficient bias that
permit us to identify factors that cause bias, (2) develop expressions for het-
eroscedasticity-related standard error bias based on moments of the scale fac-
tor’s distribution, permitting us to estimate the bias from observed variables,
and (3) investigate the small sample properties of White (1980) standard error
estimates and test for heteroscedasticity. To illustrate our simulation findings,
we use three recent accounting studies, Kothari and Zimmerman (1995), Barth
(1994), and Sougiannis (1994).2

Regarding coefficient bias, our analysis reveals that the bias magnitude
increases with increases in the coefficients of variation of the independent vari-
able and scale, which are large for variables typically encountered in account-
ing research. However, because the bias also depends on the “true regression”
intercept which is unknown, one cannot estimate the magnitude of the bias.
Evaluating our bias formulas using accounting variables indicates that proxies
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such as total assets, sales, book value of equity, net income, number of shares
outstanding, and share price that are commonly used to deflate accounting
regression variables typically mitigate coefficient bias only by a small amount,
if at all.

Unfortunately, tractability limits our analytical development to regression
models with only one independent variable and to cases when the scale factor
and true independent variable are uncorrelated. Simulations permit us to
remove these restrictions. Our simulations reveal that, surprisingly, simulated
proxies 95 percent correlated with the true scale factors can worsen bias if used
as deflators.* Yet they, and less highly correlated proxies, are quite effective at
mitigating bias if included as independent variables. We find this holds regard-
less of whether the true independent variable and scale factor are uncorrelated.

Because most extant accounting research studies have more than one inde-
pendent variable, we extend our simulations to regressions with two indepen-
dent variables. The findings are similar to those from the univariate case, but
also indicate that the coefficient on the variable more (less) highly correlated
with scale is more (less) biased. This evidence suggests that coefficients on, for
example, components of net income or particular assets or liabilities such as
securities gains and losses or the fair value of investment securities, in estima-
tion equations that also include a variable more highly correlated with scale,
such as net income or total assets, likely are unaffected by scale.

Regarding heteroscedasticity, our simulations indicate that in specifica-
tions using undeflated variables, true standard errors can be five times as large
as ordinary least squares (OLS) estimated standard errors, indicating severe
standard error bias. However, White (1980) standard errors are close to the true
ones, regardless of whether the errors are heteroscedastic. This finding is
important because Chesher and Jewitt (1987) show that White standard errors
can be biased in small samples, but there is little evidence on their finite sam-
ple accuracy. Moreover, the finding suggests that reporting White standard
errors estimated from undeflated regressions is appropriate regardless of
whether the regression error variances are heteroscedastic. A priori, it is not
obvious that White standard errors are accurate in finite samples with
homoscedastic errors because their calculation depends on estimated residuals
rather than the identity matrix. We also find that White’s test is effective at
identifying heteroscedasticity in the samples we investigate. Contrary to one of
its intended purposes, we find that deflation can result in efficiency
losses—deflating by number of shares results in /osses of up to 300 percent-even
when the deflator is 95 percent correlated with the true scale factor.

In summary, our findings suggest that including a scale proxy as an inde-
pendent variable and reporting inferences based on White standard errors is
more effective than deflation as a remedy for econometric problems related to
scale differences across firms. Also, our findings indicate that deflation has
unpredictable effects on coefficient bias, heteroscedasticity, and estimation
efficiency.
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The remainder of the paper is organized as follows. The next two sections
focus on scale-related coefficient bias, potentially in conjunction with het-
eroscedasticity. Section two explores the extent of scale-related coefficient bias
and the third section presents empirical and simulation evidence. Section four
explores heteroscedasticity in isolation. The final section summarizes and con-
cludes.

Sources and extent of scale-related coefficient bias

Intuition and example
This section presents the model we use in developing an expression for scale-
related coefficient bias to identify its sources. The model shows that one can
view scale as an omitted regression variable and that deflation and including
scale as an independent regression variable are two remedies for scale-related
coefficient bias. We also develop an expression for the ratio of the bias in
deflated and undeflated coefficient estimates when using a scale proxy as a
deflator. Tractability limits our analytical development to simple regressions
and cases in which the true scale factor, S, and true variable of research inter-
est, X, are independent. In section three, we use simulations to explore coeftfi-
cient bias and the effectiveness of the two remedies at mitigating it in simple
and multiple regression contexts and in situations where S and X are correlated.

To develop intuition for our model of scale effects, assume a researcher
seeks to study the relation between firms’ equity market values and earnings.
The research hypothesis is that market values depend on firms’ earning power
and the relation is linear. Of course, if the amount originally invested in a firm
is large, other things equal, market vaiue of equity also will be large. We refer
to a variable such as the amount invested as “scale” and the market value of
equity and net income as “observed variables.” Scale affects the values of
observed variables, but variation in equity market value attributable to varia-
tion in scale is not of research interest. An alternative way to view the
researcher’s hypothesis is that it relates to market value of equity and net
income after controlling for scale differences. We refer to variables of research
interest as “true variables” and coefficients in the regression of true dependent
on true independent variables as “true coefficients.” The researcher’s challenge
is to purge the scale factor’s effect from the observed variables without purg-
ing the effect of the true independent variable, and theory often aids the
researcher in this task. Unfortunately, however, scale often is not observed. In
this example, book value of equity is a natural candidate scale proxy, but book
value of equity reflects accounting earnings since the original investment and
amounts invested at different times at different price levels. Thus, it does not
equal the amount invested, that is, the scale factor.

Christie (1987) suggests depreciation expense as an accounting variable
that differs with firm scale but has no economic relation to firm equity value.
As Christie conjectures, untabulated findings from estimating a regression of
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market value of equity on depreciation using all Compustar firms with non-
missing data for 1990 (nobs = 1,574) indicate that market value of equity is
related significantly to depreciation expense (White 7 = 7.27). However, deflat-
ing market value of equity and depreciation by sales to remove scale differ-
ences results in a coefficient on depreciation indistinguishable from zero
(White ¢ = -1.16), and the R? drops from 0.40 to 0.01, suggesting that the
observed relation between the undeflated variables is attributable to scale
differences.’

Factors determining coefficient bias

To identify factors that determine coefficient bias, we assume that X; and Y; for
firm i are variables of research interest and that scale has a multiplicative effect
on X and Y. Thus, the researcher observes S:X; and S:Y:. In terms of the exam-
ple above, X and Y are unobservable earnings and market value of equity after
controlling for scale, and SX and SY are observed net income and market value
of equity.

Let the relation between X and Y be given by

Yi=a+by x X, +e, (D

where the error, e, is assumed homoscedastic. The researcher wants to test
hypotheses about byyx, for example, the earnings coefficient, either that it dif-
fers from zero or equals a specific amount. To obtain the relation between the
observed variables, SX and SY, multiply equation 1 by S,

SiYi=aS; +by x X;S; +¢5; . (2)

In the regression of observed SY on only observed SX, that is,

SY;=a +bsy x SX;i+& 3)

bsysx does not necessarily equal byx because equation 3 omits S; and has an
intercept, and equation 2 does not.® Also note that even if one includes S; in
equation 3 and suppresses the intercept, the error term, € = Sie;, is het-
eroscedastic because e is assumed to be homoscedastic.” Thus, scale-related
coefficient bias and heteroscedasticity easily can coexist, and often do.

If one assumes the scale factor, S, is independent of X and Y, it can be
shown that the expectation of the estimated coefficient on $X in equation 3,
E(bsysx), is

a-X/Var(X)
§2 )?2
1+ + —
Var(§) Var(X) (4)

E(bgy sx)=by x +

Recall that X and Y are unobservable. Although in accounting contexts S might
be correlated with X and Y, assuming it is not permits us to identify major fac-
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tors that cause coefficient bias. We relax the independence assumption in sim-
ulations reported in section three.

The coefficient bias, E(bsysx) minus byyx, is the second term on the right-
hand side of equation 4. Because the bias term’s denominator always is posi-
tive, its sign depends on X and a, which are not observable. If both are posi-
tive, the bias is positive and E(bsysx) exceeds byx. This could be true in
accounting contexts because (1) most accounting variables such as net income
and book value of equity have positive means, suggesting that X could be posi-
tive, and (2) negative intercepts are observed rarely in accounting relations
such as between market value of equity and net income or book value of equi-
ty. Moreover, if the research null hypothesis is that X and Y are unrelated and
the null is true, and Y is positive, the bias will be positive because the inter-
cept is positive for any dependent variable with positive mean, that is, if ¥ = a
+ 0 X, then ¥ > 0 implies a > 0. Note that it is possible for E(bsysx) to be posi-
tive with byx negative, and vice versa. Note also that because X is unobserv-
able, it is not possible to eliminate the bias simply by mean-differencing the
independent variable so that X equals zero.

Equation 4 reveals that in a simple regression with X independent of S,
only S’s coefficient of variation affects the bias. Because the reciprocal of $’s
coefficient of variation appears in the bias term’s denominator, the higher it is,
the higher is the bias. Thus, if the coefficient of variation is small relative to
that of X, then bias is small. However, because the denominator in equation 4
varies less than S’s coefficient of variation, bias does not increase proportion-
ally with the coefficient of variation.® Note also that the bias depends on a, the
true intercept, which typically is unknown.

Techniques to mitigate the bias :
If coefficient bias exists, the researcher must attempt to mitigate it. In the spe-
cial case when the scale factor, S;, is known, the researcher can divide the
observed variables by the scale factor to obtain ¥ and X and estimate equation
1, because it fulfills all normal regression assumptions; deflation simultane-
ously cures coefficient bias and heteroscedasticity. Note that only the depen-
dent and independent variables are deflated, not the intercept. Equation 2
shows that an alternative is to regress SY on § and SX, suppress the intercept,
and use a procedure to correct for heteroscedasticity.” Deflation unambiguous-
ly is the better remedy if the true scale factor is known. However, when true
scale is unknown and proxies must be used, it is an empirical question which
of the two remedies is more effective at mitigating coefficient bias and het-
eroscedasticity. We provide evidence on this in sections three and four.

To determine whether coefficient bias is mitigated by deflating by a scale
proxy, S, we note that deflation yields a different scale factor, G;=S5;/5/, for
each firm. Substituting G for S in equation 4, the ratio of the bias in the deflat-
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ed coefficient estimate, E(bgy.cx) minus byy, to the bias in the undeflated coef-
ficient estimate, E(bsysx) minus byy, is

52 X2
1+ = + Var(X
Bias Ratio = »M
G X*
- —+ — ”
Var(G) Var(X) 5)

A ratio less than one indicates that deflation has reduced coefficient bias. If '
is a “good” deflator then the bias ratio is close to zero. This is true if G>/Var(G)
>> §%/var(s).

The magnitude of G*/Var(G) depends on the joint distribution of S and .
However it is impossible, in general, to derive the distribution of a ratio of two
variables, S and §', in terms of the parameters of their joint distribution. Taylor
approximations do not yield values for G?/Var(G) close enough to the true ones
to enable us to rely on the approximations for making statements about the
ratio’s characteristics. Thus, we only note that the magnitude of G */Var(G)
depends not only on the correlation between S and §’ but also on the intercept
in the regression of S on §’, and possibly on higher order moments of § and §'
than two. In section three, we evaluate equation 5 using accounting variables
and use simulations to explore effects of deflation using a proxy for scale.

Empirical and simulation evidence on scale-related coefficient bias

This section provides evidence on coefficient bias and the available remedies’
effectiveness in accounting contexts. We base our descriptive statistics and
simulation findings on four samples derived from 1990 CompustaT data after
deleting firms with net income or book value of equity less than 0.01: (1) all
firms (1,773 observations), (2) firms with total assets in excess of $1 billion
(738 observations), (3) the 500 largest firms in terms of total assets, and (4) 100
firms randomly selected from the 500-firm sample. These are intended to rep-
resent samples typically encountered in empirical accounting research.
Because our findings generally are similar across the four samples, we report
only those for the 500-firm sample and note differences across samples when
appropriate. As described in Appendix 1, we also use estimation equations sim-
ilar to those in Kothari and Zimmerman (1995), Barth (1994), and Sougiannis
(1994) to illustrate our findings.
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TABLE 1
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Correlations between variables used as scale factors, deflators, and independent variables

and 5°/Var(S) and

and deflators, §'.

G?*/Var(G) for different combinations of assumed true scale factors, S,

Panel A: Pearson (Spearman) correlations in the upper (lower) triangle.

TA SALES BVE NI NUMSHR PRICE

TA — 0.593 0.532 0.387 0.378 -0.009

(0.0001)  (0.0001) (0.0001) (0.0001) (0.8410)

SALES 0.577 — 0.843 0.750 0.655 -0.001

(0.0001) (0.0001)  (0.0001)  (0.0001)  (0.9984)

BVE 0.659 0.840 — 0.847 0.668 0.044

(0.0001)  (0.0001) (0.0001)  (0.0001)  (0.3374)

NI 0.528 0.777 0.845 — 0.758 0.027

(0.0001)  (0.0001) (0.0001) (0.0001)  (0.5515)

NUMSHR 0.478 0.756 0.823 0.798 — -0.030

(0.0001)  (0.0001) (0.0001)  (0.0001) (0.5146)

PRICE 0.122 0.431 0.417 0.524 0.198 —
(0.0078)  (0.0001)  (0.0001) (0.0001) (0.0001)

Panel B: 52/Var(S) and G*/Var(G)

True scale G?/Var(G) by deflator

factor (S)  S?/var(s) TA SALES BVE NI NUMSHR PRICE
TA 0.357 —  0.863 0.692 0.152 0.002 0.137
SALES 0.404 1.203 . 1.098 0.056 0.001 0.377
BVE 0.473 2362 2231 S 0.120 0.002 0.684
NI 0.420 1.168  2.066 1.092 el 0.001 0.770
NUMSHR  0.604 0.818  1.037 1.091 0.045 =4 0.260
PRICE 0.026 0.055  0.028 0.207 0.018 0.002 el

Based on sample of 500 largest (in terms of total assets) CompustaT firms for 1990.The p-values for
testing the statistical significance of the correlations are in parentheses.
TA = total assets; SALES = sales; BVE = book value of equity; NI = net income; NUMSHR = number
of shares outstanding; PRICE = share price. G=5/S".If G>/Var(G) is larger than 52/Var(S),
deflation by the scale proxy, S, reduces the coefficient bias caused by scale differences when the
true scale factor is S. The cases when this is true are in boldface type.

Descriptive statistics on commonly used accounting scale proxies
Table 1, panel A presents correlations among the variables we use in our analy-
ses. Spearman correlations indicate that the variables are significantly posi-
h the correlations range from 0.122 to 0.845. Pearson

oy LA ZJI_F.LI
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correlations are similar except that they indicate that share price, PRICE, is not
significantly correlated with the other variables.

Because the relation among S, §’, and G?/Var(G) in equation 5 is complex,
we provide empirical and simulation evidence about the effect of deflating by
scale proxies, §'. Table 1, panel B presents results of evaluating equation 5 for
several accounting variables assuming they are S and §’. We assume that total
assets, TA, sales, SALES, book value of equity, BVE, net income, NI, number of
shares outstanding, NUMSHR, or share price, PRICE, is the true unobservable
scale factor, S, but the researcher deflates by S’ which is one of the other vari-
ables. For completeness and because the true scale factor is unknown, we pre-
sent §°/Var(S) and G?/Var(G) for all resulting combinations of S and S
Comparisons among alternative deflators in panel B are relevant only along the
table’s rows because in any particular situation the true scale factor is a given
and enters the calculation of G*/Var(G). Comparisons across columns reveal
only whether particular deflators mitigate bias across alternative true scale fac-
tors. This potentially is informative because the true scale factor is unknown,.

Panel B reveals that using TA, SALES, or BVE as a deflator reduces coeffi-
cient bias, that is, G?/Var(G) > §?/Var(5). For example, when TA is the deflator

and BVE is the true scale factor, G?/Var(G) equals 2.362 and 5°/Var(S) equals
0.473. Using NI, NUMSHR, or PRICE as deflators generally does not mitigate
coefficient bias. The exceptions are when BVE or NI is the true scale factor and
PRICE is the deflator. However, although deflating by TA, SALES, or BVE
reduces coefficient bias for the true scale factors we consider, the magnitude of
improvement is small. Equation 5 shows that the bias ratio depends on the coef-
ficients of variation of X, S, and G. Assuming X’s coefficient of variation is the
same as S’s, the smallest bias ratio is 51 percent [(1 + 0.473 + 0.473) / (1 +
2.362 + 0.473)] when BVE is the true scale factor and TA is the deflator. Thus
bias is reduced, at best, by approximately one-half.'® The smallest bias ratio for
the other assumed true scale factors ranges from 53 to 85 percent, indicating
bias is reduced by only 15 to 47 percent. In the worst case, bias is increased by
34 percent.

Coefficient bias diagnostic

The model in section two indicates scale-related coefficient bias results from
omitting scale as an independent regression variable. Example | in Appendix 2
also illustrates how scale differences can cause coefficient bias. It shows that
because bias results from omitting scale as an independent variable, effective-
ly there are different intercepts for observations that differ in scale.
Consequently, a diagnostic for identifying possible coefficient bias is to parti-
tion the sample into groups based on an assumed scale factor and test whether
the groups’ intercepts differ. If they do, then biased slope coefficients likely
will result from estimating a regression with a common intercept for the full
sample. This diagnostic is similar in spirit to the Goldfeld-Quandt (1965) het-
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eroscedasticity test and requires assuming only that the relation between the
observed variable and scale factor is monotonic for a given value of the true
variable.!! Of course, the diagnostic is limited to the extent the partitioning
scheme is noisy because the true scale factor is unknown. Elimination of the
middle 10 or 20 percent of the observations can mitigate noise effects.

To illustrate the diagnostic, we partition the depreciation sample above into
two groups based on sales. Untabulated findings reveal that the two intercepts
differ significantly (146.97 and 1,190.24, White ¢ = 3.75), indicating that depre-
ciation’s coefficient in the initial estimation could be biased because of scale
differences. We confirm this by estimating:

MVE = a + b DEPR + ¢ SALESDEPR + ¢

where MVE is market value of equity, DEPR is depreciation expense, and
SALESDEPR equals depreciation times an indicator variable that equals one for
firms with SALES greater than the sample median and zero otherwise. Untabulated
findings reveal a significantly positive coefficient on SALESDEPR—c’s estimate is
173.34 with a White #-statistic of 5.65.

To use Barth (1994) for illustrating the diagnostic, we partition Barth’s
1989 sample based on a scale proxy, book value of equity for the investment
securities regressions, and net income for the securities gains and losses regres-
sions. Regression summary statistics reported in Table 2 indicate that scale
potentially is an omitted variable for both regressions—the intercepts for the two
size groups statistically differ at less than the 0.02 level using White standard
errors. We confirm this by estimating equations using a scale proxy as a defla-
tor and as an independent variable.

TABLE 2

[llustrations of scale-related coefficient bias diagnostic. Estimates of specifications related
to Barth (1994) regressions of equity market value on the difference between fair and book
values of investment securities, FVBYV, and unrealized securities gains and losses, URSGL,
partitioned on median of a scale proxy (book value of equity for investment securities
regression and net income for securities gains and losses regression). Based on Barth
(1994) sample of all CompusTat banks for 1989 with available data and non-negative book
value of equity or net income. White (1980) standard errors are in parentheses.

Coefficients (standard errors)

Investment securities Securities gains and losses
Intercept FVBV Intercept URSGL
Big 1,957.70 12.37 1,172.08 17.60
(253.55) (5.34) (468.28) (6.85)
Small 284.64 4.12 166.79 17.96
(29.02) (5.72) (32.66) (2.27)
adj R? 0.59 0.55
nobs 139 122
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Evidence on using a scale proxy to mitigate coefficient bias

This section presents evidence on whether deflation by a scale proxy or its
inclusion as an independent variable results in less coefficient bias. Our find-
ings suggest that common deflators might not mitigate coefficient bias because
they are insufficiently highly correlated with true scale factors. We use simula-
tions to investigate coefficient estimates and their true and estimated standard
errors when the deflator, or scale proxy, and the true scale factor are highly cor-
related.

Table 3 presents findings for when the true scale factor, S, is book value of
equity, BVE, and the scale proxy, §', is simulated to be 95 percent correlated
with §. The analytical development in section two assumes the true scale fac-
tor, S, and independent variable, X, are independent, and relates only to regres-
sions with one independent variable. Table 3 reports simulation results when §
and X are independent and when they are 0.50 correlated. We discuss, but do
not tabulate, findings for other correlations. Figure 1 graphs coefficient bias
when using a scale proxy as a deflator or an independent variable for correla-
tions between S and §’ ranging from 0.50 to 0.99, when § and X are uncorre-
lated, and the standard deviation of S - §’ is proportional to S. In a following
section, we consider the case of multiple independent variables.

TABLE 3

Means from 250 simulation iterations of estimating seven models of true regression, ¥ =
a + b X + u, where X is a random variable, Y = 1,500+ 7X + e, and e is homoscedastic
and normally distributed with mean zero. In some models, only scaled variables, SX and
SY, are observed, and not X and Y. § is book value of equity. Some models assume S is
observable, others assume it is not. ' is a proxy for S where §' is simulated to have 0.95

correlation.
Standard error of b
Assumption Estimate of White /
about b minus Estimate estimate
Model a(§-5) true value of 7 OLS White of true of true
Corr (5,X) =0

1. -0.011 0.317 0.310 0.317 0.976
2 5.469 0.213 0.746 0.809 0.922
3 independent 6.801 0.168 1132 3.919 0.289
proportional 2914 0.286 0.636 1.613 0.394
4. independent 1.622 0.301 0.889 1.062 0.837
proportional 1.536 0.302 1.017 1.285 0.792
5: -0.048 0.303 0.997 120 0.781
6. independent 0.050 0.315 1.624 4.141 0.392
proportional 0.010 0.310 0.475 0.861 0.552
72 independent 4.609 0.231 12315 3.464 0.380
proportional 2.747 0.290 0.599 1.568 0.382
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Corr (§,X) =0.5
I -0.010 0.309 0.308 0:315 0.977
2; 2951 0.090 0.419 0.486 0.863
independent 7.751 0.184 1232 3.778 0.326
proportional 2.890 0.284 0.628 1.461 0.430
4. independent 1.385 0.178 0.564 0.785 0.719
proportional 1.344 0.180 0.640 0.884 0.724
0.045 0.209 0.711 1.068 0.666
6. independent 0.050 0.359 1.843 4.740 0.389
proportional 0.003 0.315 0.485 0.824 0.588
7 independent 5.077 0.244 1.366 3.654 0.374
proportional 2.810 0.281 0.579 1.348 0.430
Model:
15 ¥ = « a7 - b1 X + er
2 SY = az s bz SX + e2
T GV =g +  b3GX + e3
4. S = a4 + bs SX + e S’ + e4
E3E SY. .= as + bs SX + 5.8 + es
6. GY st ar IS + bs GX + c6 G + es
78 GY ' = azy 1/8' + b7 GX + G7 + e7

Based on sample of 500 largest (in terms of total assets) CompusTar firms for 1990. OLS and White
refer to the estimated OLS or White (1980) standard errors of b, the coefficient on X, SX, or GX. The
estimate of the true standard error is the standard deviation of the coefficient estimated over the 250
iterations. G = S/5’.

We simulate X = a (BVE - 3,181) + b Z + 200 where a = 0 (0.01081) and »
= 100 (86.59) for the case of X and S, that is, BVE, independent (0.5 correlat-
ed). Z is an independent standard normal random variable, and 3,181 is the
sample mean of BVE. Thus, X has mean and variance equal to 200 and 1002. ¥;
= 1,500 + 7 X; + e; where the ¢; are homoscedastic, normally, and independent-
ly distributed with mean zero and variance equal to 7002, resulting in a regres-
sion R? of 0.50. The coefficient value of seven is arbitrary, and the intercept of
1,500 is chosen to induce large coefficient bias. Our findings are insensitive to
these amounts because, as equation 5 reveals, neither affects the bias ratio. Our
scale proxy, S', equals S + v where v is normally distributed with mean zero.
We present findings under two assumptions about the standard deviation of v,
(1) that it equals 1,521 and (2) that it equals (1,521 BVE)/5,616, that is, it is
proportional to the scale factor, BVE. Both assumptions insure 95 percent cor-
relation.!> We present both because in some situations one may be more
descriptive than the other, although because the true scale factor is unobserv-
able, the researcher may not know which. As more fully discussed below, our
i e simi ions. G is as previously defined.
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We estimate seven regression models.

|l ARRRIRe § + b1 X + e

2; SY:= az + by SX + er*S+ai(S-S)

3. GY =L + b3 GX + e*G+ai(G-G)

4. SY. = ay + bsSX  + S+ er*S+aiS- S)+ca (S-S

S5 8- ds + bsSX + ¢58 + er*S

6. GYii= as I/S" -+ beGX ' * <c6G i+ er*G

T GY =" ar /S + b7 GX + ¢y + (er*S+ay(S- S)+ca (5'- SN)/S'

Model ! is the benchmark because it uses true variables, and thus X’s coeffi-
cient estimate will be unbiased and there is no heteroscedasticity. Model 2 uses
assumed observed variables that arc affected by scale, SY and SX. As in equa-
tion 3, estimating model 2 results in coefficient bias and heteroscedasticity.
Model 3 is the regression of observed SY on SX, both deflated by the scale
proxy, §’, and an intercept. If §” equaled S then model 3 would be the same as
model 1. Thus, whether model 3 has coefficient bias and/or heteroscedasticity
depends on the ability of a scale proxy to mitigate these scale-related problems.
Model 4 (model 5) includes the scale proxy (true scale factor) as an indepen-
dent variable rather than as a deflator. Again, whether model 4 has coefficient
bias depends on the effectiveness of the scale proxy at mitigating it; as equa-
tion 2 indicates, model 5 should have no coefficient bias.'?

Because including scale as an independent variable addresses only coeffi-
cient bias, models 4 and 5 have heteroscedastic errors. Section four indicates
that deflating all regression variables including the intercept is a remedy for
heteroscedasticity. Thus, we estimate models 6 and 7, which are deflated ver-
sions of models 5 and 4, to investigate deflation by a scale proxy as a remedy
for heteroscedasticity in these models. In section four, we explore deflation as
a remedy for heteroscedasticity when heteroscedasticity is known to be the
only econometric concern.

Table 3 presents means of 250-simulation iterations when the standard
deviation of S - §' is independent of S and proportional to S. Consider first the
case when § and X are independent. As expected, differences in coefficient esti-
mates between models 1 and 2 are statistically significant indicating coefficient
bias. Heteroscedasticity in model 2 also causes estimated coefficient standard
error to be less than the true one, 0.213 versus 0.809, where the estimated true
standard error is the standard deviation of estimates of b over the 250 iterations.
Surprisingly, coefficient bias in model 3 is worse, and the true standard error is
higher than in model 2. This suggests that deflating by a proxy highly correlat-
ed with the true scale factor worsens coefficient bias and decreases efficien-
cy.'* Strikingly, in model 4, where the scale proxy is an independent variable
rather than a deflator, coefficient bias is much smaller, 1.622 versus 6.801. Also
as expected, there is no coefficient bias in model 5, where the true scale factor
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is included as an independent variable, and coefficient estimates in models 4
and 5 have higher standard errors than those in model 1, presumably attribut-
able to heteroscedasticity. These findings suggest including a scale proxy as an
independent variable is more effective than deflation as a remedy for scale-
related coefficient bias.

In model 6, the deflated version of model 5, deflation by a scale proxy is
intended to mitigate heteroscedasticity, the only econometric problem in model
5. The findings indicate that estimation efficiency as measured by the standard
deviation of the coefficient estimates decreases for model 6 relative to model
5,4.141 versus 1.277." In model 7, the deflated version of model 4, coefficient
bias and estimation efficiency are approximately three times worse than in
model 4. These findings are consistent not only with those above that deflation
can increase coefficient bias but also with those in section 4 that indicate using
deflation as a remedy for heteroscedasticity when there is no coefficient bias
can decrease estimation efficiency.

Findings from assuming the standard deviation of S - §’ is proportional to
S generally are similar to the independence case. The most notable differences
are (1) deflation in model 3 mitigates coefficient bias by almost one-half.
However, including the scale proxy as an independent variable in model 4 is
more effective than deflation in model 3 at mitigating coefficient bias and is
more efficient. (2) Deflation in model 6 increases estimation efficiency some-
what relative to model 5, consistent with heteroscedasticity being mitigated. (3)
Deflation in model 7 results in less coefficient bias and greater estimation effi-
ciency than in the independence case. However, consistent with the indepen-
dence case findings, bias and efficiency are worse in model 7 than in model 4
where there is heteroscedasticity and no deflation.

Assuming S and X are 50 percent correlated results in inferences similar to
assuming S and X are independent, except that the magnitude of the scale bias,
that is, the bias in model 2, is less, 2.951 versus 5.469. Untabulated findings
indicate that these inferences also are valid for other correlations between S and
X; as correlation increases, bias decreases, but all inferences regarding using a
scale proxy to mitigate bias are the same as for the two reported correlations.

The Table 3 findings are based on assuming the scale proxy, ', is 95 per-
cent correlated with the true scale factor, S. Figure 1, panel A graphs coefficient
bias and estimated true coefficient standard error when using the scale proxy as
a deflator or an independent variable, models 3 and 4, for simulations similar
to those in Table 3 except that the correlations between S and §’ range from 0.50
to 0.99. Figure 1 graphs only the case when § and X are uncorrelated and the
standard deviation of § - §' is proportional to S because differences in coeffi-
cient bias and estimation efficiency between using a scale proxy as a deflator
and an independent variable are smaller in that case than when the standard
deviation is independent of S.!°
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Figure 1 Graph of means and empirical 95 percent confidence intervals from 250
simulation iterations of coefficient bias in two specifications of regression, SY = a + b SX
+ Su, where X = is a random variable uncorrelated with S, Y =a + 7X + ¢, and e is
homoscedastic and normally distributed with mean zero. S is book value of equity. The
top line and lighter confidence interval relates to estimating the regression deflated by §',
a proxy for § (Model 3: GY = a3 + b3 GX + e3) where the standard deviation of § - § is
proportional to S. The lower line and darker confidence interval relates to estimating the
regression with " included as an independent variable (Model 4: SY = as+ bs SX + c4 ' +
eq). G=5/§".

Panel A: Intercept, a, equals 1,500

15 T

Coefficient Bias
o
5
%

+
+

50 55 60 65 70 3 80 85 90 95 99

Percent correlation between S and S'

Panel B: Intercept, a, equals 150

10T

Coefficient Bias

6 4 + + ' ' + 4 + 4 ' '

50 55 60 65 70 73] 80 85 90 95 99
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Panel C: Intercept, a, equals 15

Coefficient Bias

Y ' 4 4 + + ' ' + + I +

50 55 60 65 70 75 80 85 90 95 99

Percent correlation between S and S'

Figure 1, panel A shows that using a scale proxy as an independent vari-
able is more effective than deflation at mitigating scale-related coefficient bias
for all correlations. However, with 99 percent correlation, there is little differ-
ence between the specifications—in both cases the bias is small (0.408 and
0.326)—except that including the scale proxy as an independent variable is less
efficient (standard errors equal 0.326 and 1.283 in the deflation and indepen-
dent variable cases). Untabulated findings indicate this is not the case when the
standard deviation of § - § is independent of S, and S and §’ are 99 percent cor-
related. In that case, including the scale proxy as an independent variable
almost eliminates the bias but, as in Table 3, deflation increases bias relative to
model 2.

The simulations reported in Table 3 and Figure 1, panel A are based on
assurning the true intercept equals 1,500. Because we selected a large intercept
to induce large coefficient bias for expositional purposes, we explore the sen-
sitivity of this assumption in Figure 1, panels B and C. Panel B (C) is based on
an assumed true intercept of 15 (150). Arguably, these likely are closer to inter-
cepts observed in typical applications than is 1,500. For example, in the two
Kothari and Zimmerman (1995) models in Appendix 1, the intercepts range
from 18 to 105. As expected, the findings in Figure 1, panels B and C indicate
that coefficient bias is lower than reported in panel A. However, consistent with
including a scale proxy as an independent variable being a more effective rem-
edy than deflation, under both intercept assumptions, the confidence interval
for the deflated model is much wider than for the model in which § is an inde-
pendent variable.

Illustrations using recent studies
Kothari and Zimmerman (1995) deflate regression variables by number of

immerman to investigate effects
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on the estimated net income coefficient, ERC, when, as an alternative to defla-
tion, scale proxies are included as independent variables and whether deflating
by NUMSHR increases coefficient bias as Table 1 suggests.

TABLE 4
Illustrations of scale effects, deflation, and using a scale proxy as an independent variable

Panel A: Kothari and Zimmerman (1995). Equity market value is dependent variable.
Models 1-4 are undeflated, models 5.and 6 are deflated by number of shares outstanding.

Model Intercept NI  NUMSHR BVE  adjR?> White % White p

1 104.89 11.60 0.77 47.87  0.0000
(29.62)  (0.45)

2 24.85 10.02 5.79 0.78 45.59  0.0000
(44.42)  (0.70) (2.28)

3 79.01 9.78 0.30 0.78 55.48  0.0000
(28.46)  (0.73) (0.10)

4 11.69 8.65 5.15 0.26 0.79 56.41  0.0000
(38.72)  (0.79) (2.10) (0.09)

EPS BVEPS

3 18.27 293 0.18 7.03  0.0297
(1.90)  (0.96)

6 18.47 3.39 -0.07 0.18 1594  0.0070
(1.87) (143) (0.09)

Panel B: Barth (1994). Equity market value is dependent variable. Models 1-3 relate to
investment securities (n = 139), models 4-6 relate to securities gains and losses (n= 122).

Model Intercept  FVBV NI BVE  adjR?> White ¥ White p
1 1,066.58 16.62 0.20 240 03016
(147.70)  (5.52)
2 122.47 5.47 1.04 0.92 845  0.1333
(40.03) (2.22) (0.05)
FVBV/BVE
3 1.23 4.18 0.05 328 0.1945
0.04) (1.70)
URSGL
4 492.41 23.46 0.29 207 4 0.3559
(198.20)  (4.88)
5 32.85 0.67 9.94 0.73 9.57 0.0883
(99:23) - (6.91) (1.90)
URSGL/NI
6 8.24 20.92 0.84 249  0.2879
(4.83)  (0.66)
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Panel C: Sougiannis (1994). Net income (models 1 and 3) or net income scaled by total
assets (models 2 and 4) is dependent variable. Sample for models 1 and 2 (models 3 and
4) are all Compustar firms with assets greater than $1 billion and available R&D data, n =
266, (available R&D data, n = 853).

Model Intercept TA R&D adjR®>  White ¥ White p

1 158.24 0.04 1.65 0.88 1932 0.0020
@B1:27) .(0.01) (0.23)
1/TA Intercept R&D/TA

2 -4.01 0.06 177 0.46 10.07  0.0030
(11.96)  (0.01) (0.20)
Intercept 7A R&D

3 35.41 0.04 1.66 0.89 16.15  0.0060
(11.62)  (0.01) (0.26)
I/TA Intercept R&D/TA

4 -0.88 0.08 -0.11 0.34 19.23  0.0020
0.27) (0.01) (0.12)

Kothari and Zimmerman (1995): regressions of equity market value on various combinations of
undeflated net income, NI, book value of equity, BVE, and number of shares, NUMSHR, and similar
specifications estimated using number of shares as the deflator. Based on sample of all CompusTaT
firms with non-missing data and non-negative net income for 1989 (nobs = 1,906). EPS and BVEPS
denote net income (or earnings) and book value of equity per share. 32 observations with values of
MVE, NI, PRICE, or EPS more than five standard deviations from the mean are eliminated.

Barth (1994): regressions of equity market value on the difference between fair and book values of
investment securities, FVBV, and unrealized securities gains and losses, URSGL, (1/4) undeflated,
(2/5) deflated by the scale proxy, and (3/6) including the scale proxy as an independent variable.
Based on Barth (1994) sample of all CompusTar banks for 1989 with available data and non-negative
book value of equity or net income.

Sougiannis (1994): regressions of net income, N/, on total assets, 7A, and research and development
expenditures, R&D, undeflated and deflated by total assets. Based on two samples of ComMPUSTAT
firms for 1989.

White (1980) standard errors are in parentheses.

Table 4, panel A reveals that when either NUMSHR or BVE or both are
included as independent variables in models 2—4, their coefficients significant-
ly differ from zero and the ERC estimate is smaller than that obtained when N/
is the only independent variable (11.60 in model 1 versus 10.02, 9.78, and 8.65
in models 2, 3, and 4). However, the difference’s economic magnitude is mod-
est. Moreover, all estimates are reasonable when interpreted as a cost of capi-
tal and are substantially larger than Kothari and Zimmerman’s ERC estimate in
the returns specification, 0.45. Thus, Kothari and Zimmerman ’s inference that
the price model yields economically more sensible ERC estimates than the
returns model largely are unaffected by scale.

Regarding effects of share deflation, Table 4, panel A also indicates that in
model 5 when earnings per share, EPS, is the only independent variable, the
ERC estimate is qu1te small 2.93, mdlcatmg a cost of capital of 34 percent.

Vhen ¢ BVE is included in model 6, the ERC
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estimate increases only by a small amount to 3.39. Moreover, BVEPS'’s coeffi-
cient is negative and insignificantly different from zero. Because we consis-
tently obtain reasonable coefficient estimates in undeflated specifications, even
when a scale proxy is included as an independent variable, and unreasonable
estimates in deflated specifications, we conclude that inferences from deflated
regressions are suspect.!’

We use Barth (1994) to demonstrate that inferences can differ if scale and
deflation effects are not considered. Findings regarding investment securities in
Table 4, panel B indicate that in model 1 when the difference between fair and
book values of investment securities, FVBV, is the only independent variable,
its coefficient is significantly positive (coef. est. = 16.62 and White r = 3.02).
When a scale proxy, book value of equity, BVE, is included as an independent
variable in model 2 or as a deflator in model 3, the coefficient estimates are
much smaller than in model 1, 5.47 and 4.18 versus 16.62. However, whether
scale is an independent variable or a deflator has little effect on the infer-
ences—the coefficient estimates are similar and both statistically significantly
differ from zero. This finding is consistent with Table 1 that indicates using
book value of equity as a deflator can reduce coefficient bias.

However, findings regarding securities gains and losses in models 4-6 sug-
gest different inferences. When the scale proxy is an independent variable in
model 5, the coefficient estimate drops from 23.46 in model 4 to 0.67 and
becomes statistically indistinguishable from zero (White ¢ = 0.10).'® When a
scale proxy is the deflator in model 6, the coefficient estimate drops only to
20.92 and remains significantly different from zero. These findings are consis-
tent with those in Table 3 and with omitting scale as an independent variable
resulting in coefficient bias. Of course, because the true coefficient is unknown,
it is not possible to determine definitively whether coefficients in models 4 and
6 are biased. However, Table 1 indicates that using net income as a deflator can
increase coefficient bias. Moreover, this securities gains and losses specifica-
tion is only one that Barth (1994) estimates when concluding that unrealized
securities gains and losses add little explanatory power in explaining bank
share prices. Other specifications in Barth (1994) that yield similar inferences
include those using different deflators and using returns as the dependent vari-
able.!”

Sougiannis (1994) deflates regression variables by total assets when inves-
tigating research and development (R&D) expenses. Although Table 1 indicates
that deflation by total assets reduces coefficient bias in our samples, findings in
sections two and three suggest that any deflation can be problematic. Thus, we
investigate the sensitivity to deflation of Sougiannis’ findings with two samples
of firms. For models 1 and 2 (models 3 and 4) we use all CoMpPUSTAT firms with
assets greater than $1 billion and available R&D data, n = 266 (available R&D
data, n = 853).

Table 4, panel C reveals that deflated estimation findings from model 2 are
similar to undeflated findings from model 1, suggesting Sougiannis’ R&D find-
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ings are unaffected by coefficient bias related to scale or by deflation.
However, estimating models 3 and 4 illustrates potential problems with defla-
tion. The coefficient on R&D in the undeflated regression, model 3, is similar
to that in model 1, 1.66 versus 1.65, with similar standard errors. Even though
Table 1 indicates using TA as a deflator reduces coefficient bias for the true
scale factors we assume there, the coefficient on R&D/TA in the deflated
regression in model 4 is negative, suggesting increased coefficient bias with
deflation. This estimated coefficient differs insignificantly from zero and sig-
nificantly from the coefficient in the undeflated regression in model 3. Without
knowing the true coefficient, one cannot definitively determine whether the
deflated coefficient is biased, but it is markedly different from those in all of
the other specifications in panel C.?°

TABLE 5

Estimated coefficient bias and true standard errors from simulations of seven models of
true regression, Y = a + b; X! + bz X2 + u, where X1 and X2 are random variables, ¥ =
1,500+ 7X1 + 7 X2 + e, and e is homoscedastic and normally distributed with mean zero.
In some models, only scaled variables, SXI, SX2, and SY, are observed and not X/, X2,
and Y. S is book value of equity. Some models assume S is observable, others assume it is
not. §' is a proxy for § where ' is simulated to have 0.95 correlation. Correlations
between variables are in parentheses.

Panel A: ofS - §') independent of §

b; b2 by b2
bias true sd bias true sd bias true sd Dbias true sd

(S, XI) = (S, X2)=0.0

Model (SX1, S; SX2, S) (X1,X2)=0.0 (X1,X2)=0.5
1 na -0.015 0.604 -0.002 0.618 -0.016 0.729 0.004 0.757
2 equal 6.632 2434 6.184 2372 6236 3.420 5579 3.322
0.8;0.5 10919 2324 4316 3.527 12.675 2.898 -1.621 4.406
3 equal 6.427 8.801 7.787 10.329 6.861 11.920 6.696 12.935
0.8:0.5 13.215 11.210 4.909 17.673 14.529 9.274 0.529 17.808
4. equal 2942 2212 2586 2252 2320 2.640 1.790 2.769
0.8:;0.5 3.052 2250 1.078 2.600 3.296 2.500 -0.543 2.991
5. na 0.164 2413 -0.105 2503 0.220 2.595 -0.189 2.778
6. na -0.412 6989 0.096 7.375 -0.416 8296 0.078 38.701
s equal 5473 8.442 6.045 8.577 5.114 10.691 5477 11.368
0.8;0.5 8.875 9.120 3.293 11.657 9.883 9.431 -0.850 13.847

(S, XI)=(5,X2) =0.5
(X1, X2) = implied = 0.28

L na -0.021 0.637 -0.003 0.650
2: equal 3.212 2346 2.884 2.333
3. equal 7.048 9971 8505 11.519
4. equal 1°728% 2.196 11.373.~ 2137
5: na 0224 2247 -0.188 2224
6. na -0497 7932 0201 8.433
77 equal 5.787 9.382 6.483 9.483
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Panel B: ofS - §’) proportional to S.

by bz by b2
bias truesd bias truesd bias truesd bias true sd

(S, XI) = (S, X2) =0.0

Model (X1, S; SX2, §) (X1,X2)=0.0 (X1,X2)=0.5
g na -0.015 0.604 -0.002 0.618 -0.016 0.729 0.004 0.757
2. equal 6.632 2434 6.184 2372 6.236 3420 5579 3.322
0.8:;0.5 10919 2324 4316 3.527 12.675 2.898 -1.621 4.406
3 equal 4132 2110 4.146 2317 3.357 2462 3486 2976
0.8;0.5 5.162 3.089 2479 4.083 5.727 4.659 -0.089 5.019
4. equal 2696 2498 2399 2528 2070 2895 1.626 2.968
0.8:0.5 2720 2615 1.012 2783 2907 2.877 -0459 3.199
5. na 0.164 2413 -0.105 2503 0220 2.595 -0.189 2.778
na -0.034 1.650 0.102 1357 -0.053 1.874 0.127 1.690
7 equal 6236 1.697 6343 1913 5.633 2190 6.021 2735
0.8;0.5 10.357 1911 4.672 3.320 12.040 3.887 -0.722 4.483

(S, XD = (5, X2)=05
(X1, X2) = implied

1 na -0.021 0.637 -0.003 0.650

2 equal 3212 2346 2.884 2333

3 equal 3.734 2251 3.801 2.609

4. equal 1.574 2309 1.279 ' 2.237

5 na 0.224 2247 -0.188 2.224

6 na -0.067 1751 0.110 1.373

7 equal 8577551867 593752152

Model

1 ; 4 — ey, + WX + e]
2 Y s = + b2 SX + e2
3. GYu = | ay + b3GX + ez
4. Y=t oy + by SX + S - eq
5 SVl &= =5 + b5 SX + ¢S + es
6. GY = lgslly + bs GX + G + es
7 GY | = apli¥ + b7GX - e7

Based on sample of 500 largest (in terms of total assets) CompusTat firms for 1990. The estimate of
the bias in (true standard error of) b, the coefficient on X, SX, or GX is the mean minus 7 (standard
deviation) of b estimated over the 250 iterations. G = S/S".

Multiple independent variables
Table 5 presents estimates of coefficient bias and true standard errors from
models 1-7 in the previous section, expanded for two independent variables.
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We present findings for five cases:

Corr (S, X1) and Corr (S, X2) Corr (X1, X2) Corr (5X1, S; SX2, S)
i 0.0 0.0 equal
i 0.0 0.5 equal
iii 0.0 0.0 0.8; 0.5
v 0.0 0.5 0.8; 0.5
\ 0.5 implied equal

As in Table 3, in all cases the correlation between § and S’ equals 95 percent,
and we report findings for when the standard deviation of § - §' is independent
of S, panel A, and proportional to S, panel B. Case i facilitates comparison with
tivity to assuming X/ and X2 are correlated and one observed variable, SX1, is
more highly correlated with the true scale factor, §, than the other, SX2. Case v
investigates sensitivity to assuming that X7/ and X2 are correlated with the true
scale factor. The findings in cases i, ii, and v are insensitive to the magnitude
of the correlation between SX/ and S and SX2 and S: it is 0.854 for the findings
reported in Table 5. The term implied in case v indicates that we do not cali-
brate the correlation, rather it is implied by the correlation between § and X/
and X2; it equals 0.28.%!

We investigate cases iii and iv where one observed variable is more high-
ly correlated with scale than the other because many extant accounting studies
include scale proxies, such as book value of equity, net income, and total assets,
as independent variables, but these are not the variables of research interest,
For example, Barth’s (1994) interest is in the incremental explanatory power of
fair values of investment securities and unrealized securities gains and losses;
Sougiannis’ (1994) interest is in research and development expenditures. Yet,
Barth includes as independent variables book value of equity or net income and
Sougiannis includes total assets, each of which likely is more highly correlated
with the true scale factor than the variables of interest. In Barth (1994), corre-
lations between book value of equity, as SX/, and available scale proxies range
from 0.79 to 0.98 and between the difference between fair and book values of
investment securities, as §X2, and the scale proxies range from 0.33 to 0.50.
Correlations between net income, as SX/, and available scale proxies range
from 0.65 to 0.79 and between unrealized securities gains and losses, as SX2,
and the scale proxies range from 0.44 to 0.47. In our Sougiannis (1994) repli-
cation sample, correlations between average R&D expenditures and book value
of equity, sales, and total assets are 0.76, 0.76, and 0.70, and correlations
between total assets and book value of equity and sales are 0.87 and 0.92.

Consistent with Table 3, Table 5, panel A reveals that when the standard
deviation of § - §' is independent of S, regardless of the correlation between §
and X/ and X2, X/ and X2, and SX/ and S, and SX2 and S, deflating by a scale
proxy;model:3yresultsiinnmore biasrandilessrestimation efficiency than includ-
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ing the scale proxy as an independent variable, model 4. However, positive cor-
relation between X/ and S and X2 and S results in lower bias for both coeffi-
cients than when these variables are uncorrelated (3.212 versus 6.632 and 6.236
for X1’s coefficient and 2.884 versus 6.184 and 5.570 for X2’s). Perhaps more
importantly, when SX/ is more highly correlated with S than $X2, the coeffi-
cient on SX2 is much less biased than that on SX/ (10.919 and 12.675 versus
4.316 and -1.621). When, in addition, X/ and X2 are positively correlated, the
coefficient on SX2 essentially is unbiased in all models. This suggests that in
studies such as Barth (1994) and Sougiannis (1994), among many others, bias
in the coefficient on the variable of interest likely largely is mitigated because
another variable more highly correlated with scale is included in the estimation
equation.

Table 5, panel B reveals similar findings when the standard deviation of
S - § is proportional to S, except that deflation is more effective at reducing
bias than in panel A, and when the correlations between SX/7 and § and SX2 and
S are equal, deflated coefficient estimates have lower standard errors than those
from models in which the scale proxy is an independent variable. However,
including the scale proxy as an independent variable results in less bias than
does deflation.

Heteroscedasticity occurring without coefficient bias

Sections two and three and example 2 in Appendix 2 illustrate that scale dif-
ferences across sample firms can cause heteroscedasticity in conjunction with
scale-related coefficient bias. Example 3 in Appendix 2 illustrates that het-
eroscedasticity also can occur without scale-related coefficient bias. This sec-
tion focuses on heteroscedasticity occurring alone not only because it can occur
alone, but also because the remedy for scale-related coefficient bias that sec-
tions two and three identify as most effective, that is, including a scale proxy
as an independent variable, leaves heteroscedasticity as the only remaining
problem. Moreover, findings reported in this section indicate that deflation by
a scale proxy is not always effective at mitigating heteroscedasticity in other-
wise well-specified models, and suggest no reason to believe that deflation by
a scale proxy will be more effective in models that have additional economet-
ric problems.

Model and concerns expressed in prior research B

We model heteroscedasticity as ¥ = a + b X + S e (or vvSe), where e is
homoscedastic but the regression error is heteroscedastic. This is the same as
the assumed true model in section two, equation 1, except that the error is het-
eroscedastic. To eliminate scale-related coefficient bias concerns, unlike sec-
tion two, we assume here that Y and X are observable. Further details are in
Appendix 3. The above relation indicates that, unlike the case of coefficient
bias, if deflation is used and heteroscedasticity is the only concern, then the
intereepizshouldybe deflatedralongywithyall other regression variables.??
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Most empirical accounting studies citing scale differences across firms as
a research design issue are concerned with heteroscedasticity (Miller and
Modigliani 1966; Bowen 1981; Daley 1984; Olsen 1985; Landsman 1986;
Magliolo 1986; Harris and Ohlson 1987; Kormendi and Lipe 1987; Beaver,
Eger, Ryan, and Wolfson 1989; Barth, Beaver, and Stinson 1991; Shevlin 1991;
Barth 1991, 1994; Barth, Beaver, and Landsman 1992; among others). Both
remedies for heteroscedasticity are used often: White (1980) standard errors,
which addresses only standard error bias, and deflation, which addresses esti-
mation inefficiency and standard error bias if the scale proxy is “correct.”
Although Chesher and Jewitt (1987) show that White standard error estimates
are biased in small samples, they provide only bounds for the bias. Thus, finite
sample properties of White standard error estimates and test for heteroscedas-
ticity in accounting contexts are unexplored. Moreover, the effectiveness of
deflating by scale proxies is an open question.

Researchers sometimes cite concern about spurious correlation in connec-
tion with using deflators.”* Deflating by a scale proxy rather than the true scale
factor does not induce correlation between regressor and error, and hence does
not induce spurious correlation, if the proxy is independent of ¢.?*> Researchers
can investigate this concern by estimating correlations between undeflated
regression residuals and candidate deflators. To illustrate, we estimate untabu-
lated correlations between undeflated residuals from regressions of market
value of equity on net income, ¢!, and on book value of equity, e2, and some
common deflators for our CompustaT samples. The deflators are sales, book
value of equity, net income, number of shares outstanding, and share price. We
find that sales, book value of equity, and price generally are uncorrelated with
el and only price is uncorrelated with e2. The others generally are correlated
with the residuals. These findings suggest some common deflators can bias
coefficient estimates. They also suggest the deflators are omitted variables and
therefore should be included in the regression as independent variables.

Evidence on White (1980) standard errors and test for heteroscedasticity, and
potential efficiency gains using deflation

We assess the effectiveness of heteroscedasticity remedies by presenting simu-
lation evidence on (1) bias in estimated standard errors, that is, the ratio of esti-
mated to true standard errors in the undeflated model,® (2) finite sample prop-
erties of White standard errors, that is, ratios of White to true standard errors in
the undeflated model and White to true standard errors in the deflated model,
(3) efficiency gains from deflating regression variables by the correct, known
scale factor to remove heteroscedasticity, that is, ratio of true deflated to true
undeflated standard errors, (4) variability of these ratios across samples, and
(5) properties of the White test for heteroscedasticity. In the next section, we
explore effectiveness of the remedies when the true scale factor is unknown
using simulations with five commonly used scale proxies.
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The independent variables, X, are net income before extraordinary items,
NI, and book value of common equity, BVE, obtained from Compustar. The
dependent variable is simulated after specifying arbitrary regression coeffi-
cients and generating normally distributed errors with mean zero and variances
proportional to the independent variable or its square, although we only report
findings for the latter.”” We make these error variance assumptions for three
reasons. (1) White (1980) shows that if the error variance weights are indepen-
dent of X, standard error estimates are unbiased. This suggests that only
weights correlated with X are of interest; we investigate two extreme examples.
(2) Untabulated findings indicate the assumptions are empirically valid.?® (3)
The examples in Appendix 2 suggest that error variances proportional to X or
X? are intuitive for merged firms.

Summary statistics for 250 simulation iterations presented in Table 6 indi-
cate that using undeflated variables. OLS standard errors approximate 21 per-
cent of the true standard errors indicating severe standard error bias, yet White
standard errors approximate 88 percent of the true ones.?’ However, standard
deviations of the White to true undeflated standard error ratio are 26 and 28
percent indicating that, although on average White standard errors approximate
true standard errors, the 95 percent confidence limits are 36 (88 - 2*26) and 140
(88 + 2*26) percent, assuming normality.

TABLE 6

Summary statistics from 250 simulation iterations for Y = a + b X + u, where X = net
income or book value of equity, Y is defined as 5+ 5X + ¢, and e is drawn from normal
distribution with mean zero and variance proportional to X*. Thus, the true value of b is
known to be five.

X = Book value of

X = Net income equity
Mean sd Mean sd
Standard error of coefficient estimate (b):
estimated / true (undeflated model) 0.205 0.026 0.206 0.027
% estimated < true (undeflated model) 100.0 100.0
White / true (undeflated model) 0.884 0.261 0.883 0.281
% White < true (undeflated model) 732 72.0
true (deflated) / true (undeflated) 0.184 0.006 0.220 0.007
% true (deflated) < true (undeflated) 100.0 100.0
White / true (deflated model)
All 0.991 0.007 0.995 0.023
% White < true (deflated model) 1.2 61.6
When White X2 test rejects 0.991 0.007  0.995 0.023
White’s X2 test:
X2 (undeflated model) 12.955 5132, 12.547 4.429
% reject 92.8 94.0
X2 (deflated model) 2.474 2.301 2.491 2.631
% reject 8.4 10.4
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Based on sample of 500 largest (in terms of total assets) CompusTaT firms for 1990. All estimation
based on ordinary least squares (OLS). Because the true error variances are simulated and thus
known, deflated regressions meet all standard assumptions underlying OLS estimation. Undeflated
errors are heteroscedastic.

sd denotes standard deviation, White refers to White (1980).

As expected, Table 6 indicates that estimation using variables deflated by
the zrue scale factor, and thus with homoscedastic errors, always yields effi-
ciency gains. Deflated estimates are 4.5 and 5.4 times as efficient as undeflat-
ed estimates (1/0.220 to 1/0.184). Small standard deviations of the ratios (0.006
and 0.007) indicate that confidence limits for these estimates are quite narrow.
White standard errors for the deflated regressions are almost identical to the
true deflated standard errors with mean ratios of 0.991 and 0.995. This suggests
using White standard errors is appropriate even with homoscedastic errors.
Moreover, although one would expect White standard errors to vary consider-
ably from sample to sample because they are based on estimated residuals
rather than the identity matrix, standard deviations for these ratios are small
(0.007 and 0.023). Untabulated findings indicate the ratios’ standard deviations
remain small even when the error term variance increases and thus the regres-
sion R? decreases.

Because our simulated regressions are well-specified, the White X statis-
tic in Table 6 represents a test of only heteroscedasticity. The findings indicate
the test is quite successful in detecting heteroscedasticity when it exists; it does
so in 92.8 and 94.0 percent of the iterations. But in the 100-firm subsample, the
rejection rate is only 57 percent—despite our extreme heteroscedasticity
assumption. This indicates that the commonly followed procedure of using
White standard errors only if the White X test rejects homoscedasticity can
lead to incorrect inferences from biased standard error estimates almost 43 per-
cent (100 - 57) of the time in smaller samples, although it does so just 6 to 7
percent of the time in larger samples. Because we also find that White standard
errors are reasonably accurate even with homoscedasticity, this finding rein-
forces our suggestion that researchers base inferences on White standard errors
regardless of whether the White test rejects homoscedasticity. In 8.4 and 10.4
percent of the iterations, test statistics for deflated regressions reject at the five
percent significance level the null of homoscedasticity when it is true. Thus, the
White test appears slightly conservative in indicating heteroscedasticity.

Evidence on deflation using a scale proxy

Next we explore effectiveness of deflation as a remedy for heteroscedasticity
when the true scale factor is unknown and regression variables are deflated by
a scale proxy. Table 7 presents summary statistics from deflated estimation
simulations when the error variances are simulated to be proportional to X2,
where X'=NlorBVEyandseveral.commonideflators are scale proxies. We con-
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TABLE 7

Means from 250 simulation iterations for Y/S' = a /S'+ b X/S' + u, where X = net income
or book value of equity, Y is defined as 5 + 5X + e, and e is drawn from normal
distribution with mean zero and variance proportional to X2, §' is a deflator used to
mitigate e’s heteroscedasticity. Five commonly-used deflators are considered: total assets,
TA, sales, SALES, book value of equity, BVE or net income, NI (when not equal to X),
number of shares outstanding, NUMSHR, and share price, PRICE.

Deflator: TA SALES BVE or NI NUMSHR PRICE

Standard error of b:

true deflated / true undeflated: Measures true efficiency gain (ratio<l) or loss (ratio>1)

X =NI 0.549 0.402 1.165 3.857 0.549
X =BVE 0.354 0.502 2277 3.897 0.583
White deflated / White undeflated: Estimate of efficiency gain (ratio<l) or loss (ratio>1)
X=NI 0.670 0.491 1.095 0.260 0.647
X =BVE 0.446 0.600 1.848 0.094 0.686

estimated deflated / true deflated: Measures accuracy of estimated deflated standard
errors (ratio=1 if accurate)

X=NI 0.427 0518 0.163 0.023 0.317
X =BVE 0.735 0.435 0.090 0.012 0.297

White deflated / true deflated: Measures accuracy of White deflated standard errors
(ratio=1 if accurate)

X=NI 0.954 0.945 0.737 0.052 0.943
X=BVE 0.989 0.921 0.613 0.018 0.937

%0 White test rejections:

Indicates whether deflation eliminated heteroscedasticity (low ratio indicates elimination
or mitigation)

X =INI 99.6 91.6 29.6 10.0 80.0
X = BVE 100.0 62.4 324 14.8 81.2

Based on sample of 500 largest (in terms of total assets) CompusTat firms for 1990. All estimation
based on ordinary least squares (OLS). Because the true error variances are simulated and thus
known, deflated regressions do not necessarily meet all standard assumptions underlying OLS
estimation. Undeflated errors are heteroscedastic. White refers to White (1980) standard error
estimates and test for heteroscedasticity.

sider as deflators total assets, TA, sales, SALES, share price, PRICE, number of
shares outstanding, NUMSHR, and either BVE or NI when it does not equal X.
Because simulated regression errors are independent of the deflators, deflation
does not induce spurious correlation.

The Table 7 findings indicate that efficiency gains from deflation in Table
e NO hieved when ¢ proxies are used. The ratio of true deflat-
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ed to true undeflated standard errors is less than one in only six of the 10
instances. We find that efficiency loss using deflation can be almost 300 per-
cent. In unsimulated estimation settings, true standard errors are unknown and
efficiency gain or loss only can be estimated. The Table 6 findings that White
standard errors generally are close to the true ones suggest that one method for
estimating efficiency gain or loss is to compare White standard errors for the
deflated regression with those for the undeflated regression. Table 7 confirms
that this provides reasonable approximations to the corresponding ratio of true
standard errors except when NUMSHR is the deflator.*’ Using NUMSHR as the
deflator results in efficiency losses, even though White standard error estimates
indicate efficiency gains and the White test indicates NUMSHR is the deflator
most effective at mitigating heteroscedasticity.

Table 7 indicates OLS estimated deflated standard errors always understate
true ones—the understatement ranges from 26.5 to 98.8 percent (1- 0.735 to 1-
0.012). White deflated standard errors also often understate true ones, although
they are much closer except when NUMSHR is the deflator. Table 7 also indi-
cates the White test often rejects the null of homoscedasticity for deflated
regressions, particularly when TA, SALES, or PRICE is the deflator, even
though estimation efficiency is increased. Together with the findings in Table
6, this indicates deflation does not always eliminate heteroscedasticity, at least
the form of heteroscedasticity the White test identifies. It identifies only het-
eroscedasticity related to the independent variables and their cross-products
because only this type of heteroscedasticity results in biased standard error esti-
mates. It is possible that although this form of heteroscedasticity has not been
eliminated by deflation, other forms have been mitigated and thus estimation
efficiency has increased.

Hllustrations using recent studies

Kothari and Zimmerman (1995) use number of shares as a deflator. Table 7
suggests that although the White test indicates NUMSHR deflation is effective
in mitigating heteroscedasticity, it greatly increases estimation inefficiency and
White standard errors in NUMSHR deflated specifications substantially under-
state the true ones. Table 4, panel A indicates that in all undeflated regressions
the White (1980) %° test rejects at very low significance levels the null of
homoscedasticity. However, apparently share deflation does not eliminate het-
eroscedasticity (models 5 and 6, White 1 p value = 0.0297 and 0.0070).
Moreover, consistent with findings in Table 7, White standard errors for ERC
estimates in undeflated specifications are smaller than those in deflated speci-
fications, indicating efficiency losses from deflation by NUMSHR.

Sougiannis (1994) deflates by total assets, which Table 7 indicates reduces
heteroscedasticity in our samples. However, Table 4, panel C reveals that the
White ° test rejects the null of homoscedasticity in all specifications with p
values ranging from 0.0020 to 0.0060. For the larger sample, the test statistic is
larger forthe deflated specificationymodel4, than the undeflated one, model 3,
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although coefficient standard errors are smaller in the deflated regressions indi-
cating an increase in estimation efficiency. Yet, for the smaller sample, White
standard errors for the deflated regression, model 2, are not substantially small-
er than the undeflated ones, model 1, indicating efficiency gains from deflation
are minimal. It appears deflation by total assets does not noticeably reduce het-
eroscedasticity in these specifications.

Summary and concluding remarks
This study investigates two major econometric issues commonly arising in
empirical accounting research studies that use cross-sectional levels-based
research designs: coefficient bias and heteroscedasticity. These issues arise
because regression variables in such research designs likely are affected by
cross-sectional scale, or size, differences among sample firms. That is, large
firms have large values of most variables and small firms have small values,
and these magnitude differences often are unrelated to the research question.
We provide evidence on the extent of scale-related econometric problems
in accounting research contexts and the effectiveness of available remedies:
deflating regression variables by a scale proxy, including a scale proxy as an
independent variable, and using White (1980) heteroscedasticity-consistent
standard error estimates. Because tractability limits our analytical development
to regression models with a single independent variable and to situations in
which the scale factor and true independent variable are uncorrelated, we use
simulations to relax these restrictions. We base our simulations on CoMPUSTAT
firms and accounting data to mimic samples, empirical distributions of
accounting variables, and estimation equation specifications typical in empiri-
cal financial accounting research. Although our analytical development is gen-
eral, our selection of accounting and scale variables is motivated by regressions
of, for example, market value of equity on net income or book value of equity.
The existence of omitted variables coefficient bias and heteroscedasticity
is well known. However, we develop expressions for coefficient bias that per-
mit us to identify factors affecting the bias, and for heteroscedasticity-related
standard error bias that permit us to estimate it from observed variables. We
model coefficient bias as an omitted variable and show the bias depends on the
intercept in the true regression and on the coefficients of variation of the inde-
pendent variable and scale. Because scale is an omitted variable, coefficient
bias can be mitigated by including a scale proxy as an independent variable.
However, researchers often deflate regression variables by scale proxies
because deflation can mitigate heteroscedasticity as well as coefficient bias.
Consequently, we investigate whether deflation by a scale proxy or its inclusion
as an independent variable is more effective at reducing coefficient bias. We
also provide empirical evidence on properties of White (1980) standard error
estimates and test for heteroscedasticity, and efficiency effects of deflation. Our
analysis,suggests,diagnostics.and,othertechniques researchers can use to eval-
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uate the extent of coefficient bias and heteroscedasticity they face, and the
effectiveness of the remedies they select to mitigate them.

Regarding coefficient bias, we find the following. (1) Scale proxies com-
monly used to deflate regression variables—net income, book value of equity,
sales, total assets, number of shares, and share price—typically mitigate coef-
ficient bias only by a small amount, if at all. In some cases, deflation worsens
bias. (2) Surprisingly, proxies 95 percent correlated with the true scale factors
can worsen bias if used as deflators but are quite effective at mitigating bias if
included as independent variables, as are proxies less highly correlated. (3)
With two independent variables, the coefficient on the variable more (less)
highly correlated with scale is more (less) biased. Our inferences regarding coef-
ficient bias are insensitive to correlation between the true scale factor and inde-
pendent variables and multiple independent, potentially correlated, variables.

Regarding heteroscedasticity, we find the following. (1) In undeflated
specifications, OLS-estimated standard errors can severely underestimate the
true ones; yet, White (1980) standard errors are close to the true ones regard-
less of whether errors are heteroscedastic. (2) In deflated specifications using
some deflators, notably number of shares, White standard errors also can
severely understate the true ones. (3) Deflation by scale proxies does not
always eliminate heteroscedasticity as indicated by the White ** test and can
result in efficiency losses of up to 300 percent. Efficiency losses can result even
when the deflator is 95 percent correlated with the true scale factor. (4) White’s
test is effective at identifying heteroscedasticity in our larger samples when
regressions are otherwise well-specified, although it is somewhat conservative.

We estimate specifications similar to those in Kothari and Zimmerman
(1995), Barth (1994), and Sougiannis (1994), to illustrate the implications of
our findings. We find that although none of these studies’ reported inferences
are attributable to scale differences, our simulation findings are confirmed. (1)
Deflation by some deflators in related samples does not mitigate substantially
coefficient bias, can result in incorrect inferences, does not always eliminate
heteroscedasticity as indicated by the White test, and can decrease estimation
efficiency. (2) Findings can be sensitive to the deflator choice. (3) Using a scale
proxy as an independent variable rather than as a deflator is effective at miti-
gating coefficient bias. (4) When the variable of interest is less highly correlat-
ed with scale than other independent variables, any scale-related coefficient
bias is mitigated. We also provide evidence that the deflator’s coefficient of
variation is a factor in determining coefficient bias and that our diagnostic for
identifying coefficient bias is effective.

In summary, our findings suggest that if scale differences are of concern to
empirical accounting researchers, the most effective remedy is to include a
scale proxy as an independent variable and report inferences based on White
standard errors. Deflation has unpredictable effects on coefficient bias, het-
eroscedasticity, and estimation efficiency. Our findings also suggest that in
multiple regression specifications, bias in the coefficient on the variable of
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interest, for example, components of net income or particular assets or liabili-
ties, such as securities gains and losses or fair value of investment securities, is
less of a concern when estimation equations also include a variable more high-
ly correlated with scale such as net income or total assets.

Appendix 1

This appendix describes procedures we use to develop estimation equations and
samples similar to those in Kothari and Zimmerman (1995), Barth (1994), and
Sougiannis (1994).

Kothari and Zimmerman (1995) estimate earnings response coefficients,
ERC, by estimating various specifications of the relation between earnings and
share prices, including share price regressed on earnings per share, EPS,
(“price model”). Kothari and Zimmerman deflate all variables by number of
shares to mitigate heteroscedasticity. We estimate Kothari and Zimmerman’s
price model, undeflated and deflated by number of shares.

MVE=a+bNIl+e (KZ1D)
and
PRICE=a’+b"EPS+¢’ (KZ2)

We also estimate versions of equations KZ1 and KZ2 that include scale prox-
ies as additional independent variables.’' To approximate Kothari and
Zimmerman’s annual sample we use all CompusTart firms with non-missing data
and non-negative net income for 1989 after eliminating observations with
MVE, PRICE, NI, or EPS greater than five standard deviations from their mean
(nobs = 1,906).%2

Barth (1994) investigates value-relevance of disclosed fair value estimates
of banks’ investment securities by regressing market value of equity on book
value of equity and investment securities’ fair value, and reports as a sensitivi-
ty check a regression of market value of equity on net income and fair value
securities gains and losses. Using Barth’s data, we estimate three versions of
two estimation equations similar to those in Barth (1994).3

MVE=c+dFVBV +u, (B1)
and
MVE =c¢"+d" URSGL+u’. (B2)

Equation B1 includes as an independent variable the difference between fair
and book values of investment securities, FVBV, and equation B2 includes
unrealized securities gains and losses, URSGL.

Sougiannis (1994) examines whether net income reflects the benefits of
past research and development (R&D) expenditures by regressing net income
on total assets and current and lagged R&D expenditures, with all regression
variables deflated by total assets. We replicate Sougiannis’ regressions of net
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income on total assets and current and lagged R&D expenditures using 1989
CompusTart data. For simplicity, we use as our R&D variable average R&D over
seven years, rather than Sougiannis’ variable obtained by fitting an Almon lag
over R&D variables lagged up to seven years. To obtain a sample size compa-
rable to Sougiannis, we include all firms with assets greater than $1 billion with
available R&D expenditure data. This results in a sample of 266 firms, com-
pared with Sougiannis’ sample of 311 firms for his latest sample year, 1985. We

estimate

Nl=f+gTA+hR&D+v, (S1)
and |

(NITTAy=¢"+ f"(1/ TAY+ W' (R&D/TA)+ ' . (S2)

Table 4, panel C reveals that in the undeflated regression, the coefficient on
R&D of 1.65 is comparable to Sougiannis’ mean coefficient summed across
seven lags of 2.08, providing some evidence that using average R&D does not
invalidate our comparison with Sougiannis’ findings.

Appendix 2

This appendix provides three examples to illustrate scale-related problems.
Example 1 illustrates how coefficient bias results from scale differences, exam-
ple 2 illustrates a case when both coefficient bias and heteroscedasticity are
observed, and example 3 illustrates a case when scale differences cause het-
eroscedasticity but not coefficient bias.

Example 1

For simplicity, assume the scale factor has two values: large and small. Within
each scale group there is no relation between variables ¥ and X, but both vari-
ables are larger for large firms than for small firms. One can think of these
groups as money-center and regional banks, and of market values as Y and
depreciation as X. Because banks’ profits depend on their financial assets and
liabilities rather than on depreciable assets, there is no relation between Y and
X. Figure Al depicts this situation. The short lines representing the regressions
of Y on X for each group are nearly horizontal, consistent with no relation
between Y and X. However, consistent with scale differences between the
groups, the intercepts of the two regression lines differ. Thus, when Y is
regressed on X for both groups combined, the slope coefficient is positive—a
biased estimate resulting from scale differences between the two groups. In this
example, coefficient bias occurs without true heteroscedasticity because the
variables are generated with homoscedastic errors.
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Figure Al: Illustration of coefficient bias based on simulated data

For points in the lower left and upper right corners, Y is independent of X. For points in the upper
right corner, both X and Y have means equal to 20 and for points in the lower left corner, they have
means equal to five. Because X and Y are independent, the regression line for each group is nearly
horizontal. However, the regression lines do not have the same intercept. Thus, the regression line is
not horizontal when estimated for both groups combined. The intercept difference between the two
groups results in a biased slope coefficient in the combined regression.

Example 2

Assume a researcher plans to estimate a cross-sectional regression equation:
MVE = a + b NI + ¢, based on the constant P/E ratio valuation model where
MVE is market value of equity and N/ is the firm’s earnings. To introduce scale,
think of the above relation as being descriptive of unit firms with scale equal
to one, identified by the subscript i, and large firms as mergers of unit firms.
Let i = 1 represent the small firm, and let the merger of two unit firms, i = 2
and 3, represent the large firm whose scale equals two. Thus, the equity value
of the small firm is MVEs = MVE; = a + b NI; + ¢; and of the large firm is
MVE; = (MVE> + MVE3) =2 a + b (NI + NI3) + (e2 + €3). In the regression
equation of MVE on NI, scale is an omitted explanatory variable with values
equaling one and two for the small and large firms. Its omission results in a
biased estimator of b.** Also, if the variances of e; are equal for all i, the vari-
ances of es and e, differ, that is, the errors are heteroscedastic.®’

Example 3

To guarantee the absence of coefficient bias assume, consistent with a cross-
sectionally constant P/E ratio, that the intercept, a, equals zero. That is, MVE,
= (MVE> + MVE3) = b (N> + NI3) + (e2 + e3) and MVEs = MVE; = b NI; + e;.
Here, the regression of MVE on NI has no omitted variable. However, e, = e
+ ez and es = ¢;. As in the previous example, the variances of ¢, and eg differ
causing heteroscedasticity. Note that if ¢z and e; are independent, then the error
terms’ variances are proportional to the scale factor. If they are perfectly corre-
lated, the variances are proportional to the square of the scale factor. One can

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



560 Contemporary Accounting Research '

think of the independence case as a conglomerate firm and the perfect correla-
tion case as a single product firm.

Appendix 3
This appendix develops expressions for the ratio of the estimated standard error
variance to the true variance as a function of the moments of the scale factor’s
distribution.

In the standard well-specified regression equation ¥ = a + » X + ¢ with
Var(e;) = w; indicating heteroscedasticity, it is well known that the expectation
of the ratio of the estimated variance to the true variance of b is

2 5
LW EX Z X Wik
nY, WiXj (A1)

where x; equals X; — X. X is the mean of X, and # is the sample size.

White (1980) shows that if the weights are independent of X then the
expectation of this ratio is one: there is no bias in the variance estimate.
Negative correlation between w and X results in a ratio greater than one indi-
cating that the estimate overstates the true standard errors. However, likely the
more common situation in accounting contexts is when w and X are positively
correlated and hence the estimate understates the true standard errors.

To obtain insight into the factors affecting the magnitude of the standard
error bias, we assume that the scale factor, S, is the independent variable, X,
because this is an extreme case—correlation between X and S equals one. As
indicated in Appendix 2 and section three, scale-related heteroscedasticity like-
ly results in weights proportional to the scale factor, S, or $2. It can be shown
that when w; is proportional to X;? or, equivalently, the error term standard devi-
ations are proportional to X;, the ratio of estimated variance to true variance
equals®®

n—1 . Var — Ku - Var — %&'d LSk X
n Ku-Var+2sd-Sk-X + X2’ (A2)

where Ku is kurtosis ((Sx'a/n)/Var?), Sk is skewness ((2x;3/n)/Var*?), sd is stan-
dard deviation of X ( vVar), and Var is variance of X (Sx;2/n).

Expressing the bias ratio as a function of the moments of X facilitates
understanding of sources of bias. For example, the equation shows that the
higher the skewness and kurtosis, the greater the downward bias in the standard
error estimate. Also, downward bias is greater when X is small compared to
X’s standard deviation. The bias ratio for normally distributed X where Sk = 0
and Ku = 3 in the worst case, when X equals zero, equals one-third indicating
that estimated standard errors are 0.58 ( 1/+/3 ) times the true standard errors. In
our sample, when X is net income, N/, and book value of equity, BVE, the stan-
dard errorratiossthat iss the,square root0f equation A2, are 0.207 and 0.208
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which are lower than when X is normally distributed indicating that bias is
more severe in observed data.

When the error term standard deviations are proportional to vX and thus
w; is proportional to X, the ratio of OLS variance to true variance equals

X WL

.s‘d-SkT)? Iy 2 (A3)

Equation A3 shows that if the skewness of X does not equal zero the ratio dif-
fers from one, but if X is much larger than Sk-sd and hence X approxi-
mately equals Sk-sd + X , then the ratio is close to one.’” When X equals N/
and BVE, the standard error ratios for our sample are 0.364 and 0.372 indicat-
ing that the bias here is less severe than when heteroscedasticity weights are
proportional to X?,

Endnotes

1 We do not address whether returns- or levels-based designs are appropriate. Two

advantages of returns- or first-difference-based designs are that heteroscedasticity

largely is avoided and effects of intertemporally constant omitted variables,
including scale, are eliminated. If scale is intertemporally constant, it also can be
eliminated by estimating firm-specific intercepts, with a sufficient number of
time-series observations. However, Landsman and Magliolo (1988) show that
levels models can dominate returns models, for example, when model parameters
or omitted variables are not intertemporally constant. Moreover, returns-based
designs and estimating firm-specific intercepts are not always feasible, such as
when only a few years’ data are available (e.g., Barth, Beaver, and Landsman

1996) or the variable of interest varies little over time (e.g., Guenther and

Trombley 1994; Barth and McNichols 1994; among others). Returns designs also

are problematic if when the variable’s information is retlected in share prices is

unknown (e.g., Amir, Harris, and Venuti 1993). Moreover, Kothari and

Zimmerman (1995) show that because prices lead accounting recognition in

incorporating new information, price-levels designs provide more economically

sensible results.

Scale issues also are relevant to finance and economics research, among others.

Bernard (1987) also examines model specification issues related to scale in cross-

sectional accounting capital markets research. However, our research objectives

and questions differ from his. Others (e.g., Kuh and Meyer 1955; Lev and Sunder

1979) examine ratios as a control for firm size. However, Kuh and Meyer analyze

correlation, not regression, coefficients and thus their findings provide limited

insights about using regression techniques.

3 We use three studies because not all of our findings are easily illustrated using
one. Moreover, they illustrate application of our findings in different settings. We
select Kothari and Zimmerman (1995) because (1) it analyzes the advantages of
levels-based research designs. (2) The deflator is number of shares, which we
identify as potentially problematic. (3) The estimation equation has only one
independent variable, as in our analytical development. We select Barth (1994)
and Sougiannis (1994) because (1) they are recent examples of levels-based
studies that estimate different equation specifications, all common to accounting
research. Barth’s (1994) specifications are based on asset and liability or net
income valuation models and Sougiannis’ (1994) are based on Ohlson (1989). (2)

[8%]

Reproduced with permission of the copyright owner:  Further reproduction prohibited without permission.



562 Contemporary Accounting Research

Both use multiple regressions with the variable of interest likely less correlated
with scale than other independent variables. (3) Both use deflation, but the
deflators differ. Barth (1994) uses number of shares, and Sougiannis (1994) uses
total assets. Moreover, data similar to that used in all three studies is available to
us.

4 Christie (1987) notes that if observed variables are not homogeneous of degree
one in the scale factor, then deflation does not eliminate coefficient bias. Our
findings suggest that even if observed variables are homogeneous of degree one
in the scale factor and a highly correlated scale proxy is available, deflation does
not mitigate coefficient bias.

5  Landsman and Magliolo (1988) present a different perspective. They argue that
because economic earnings X* the true variable, is unobservable, any variable
correlated with earnings can be a measure of X*. They also caution that deflation
can eliminate the effect of research interest; here, deflation by sales can eliminate
DEPR’s correlation with X*. Although Landsman and Magliolo’s interpretation is
possible, our evidence is consistent with coefficient bias.

6  More generally, observed variables X, and Y could equal k& + S:.X; and k'+ 5:Y; .
Then, the relation is Y5 = (k' - byx k) + a Si + byx Xs + (Sie;) and regression with
observed variables has an intercept in addition to the other variables in equation
2

7  The reverse also can hold, that is, e¢’s variance can be such that e is
heteroscedastic but Se is not. The model’s intuition easily can be applied to this
alternative situation. _

8 Table 1, panel B reports 52 /Var(S) for several accounting variables commonly
used as scale proxies, that is, total assets, sales, book value of equity, and net
income, for a sample of CompPUSTAT firms.

9  Consistent with Christie (1987) and Landsman and Magliolo (1988), equation 2
also shows that if the scale factor and its coefficient are intertemporally constant,
first-differencing eliminates «S, permitting an unbiased estimate of byx. However,
first-differencing can reduce variation in X, the variable of interest, decreasing
efficiency of estimating byx (Landsman and Magliolo). Moreover, scale or its
coefficient may not be intertemporally constant. See endnote 5.

10 The smallest bias ratio is 28 percent in the 100-firm sample, indicating
improvement of 72 percent, when BVE is the true scale factor and 7A is the
deflator.

11 If the relation is proportional to the scale factor, as assumed in the analytical
development, then one also can include a scale proxy as an independent variable
and test whether its coefficient equals zero.

12§ is constant across simulation iterations. Repeating our simulations with
different assumptions yields findings similar to those reported: (1) $’ varying
across iterations, (2) v uniformly distributed over [-2,635, 2,635], which is
required so that the correlation of § and §' equals 0.95, and (3) net income as the
true scale factor. Also, findings based on 30 and 100 simulation iterations are
similar to those we tabulate, which are based on 250 iterations, suggesting that
our conclusions likely would be unaltered with a larger number of iterations.

13 Including an intercept in models 4 and 5 does not follow directly from equation
2. Estimating the two models without an intercept yields findings similar to those
from estimating them with an intercept reported in Table 3. We include an
intercept in these two models because researchers often include intercepts and an
intercept would be required for correct model specification if the means of S and
S differed. In our simulations, the means.are equal.
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14 The intuitive reason why the deflator performs poorly when s(S - §') is
independent of § is that under that assumption, the magnitude of § - § is the
same regardless of the magnitude of S. When §’s coefficient of variation is high,
the average magnitude of § - §' is large (small) relative to small (large) values of
S, even if §' is 95 percent correlated with S. Thus, §' performs poorly as a
deflator.

15 White standard errors in models 1, 4, and 5 approximate 98, 84, and 78 percent of
the true ones, which is consistent with findings in section four where we
investigate remedies for heteroscedasticity unaccompanied by coefficient bias.
However, in model 6 they approximate only 39 percent. In general, White
standard errors are noticeably less accurate in deflated models.

16  When §' is included as an independent variable, the plim of the bias in b is:

aX[1-(Corr(S, S'))ZJ
[Var(X)(1+ 82 /Var(S)] +[1 = (Corr(S,8')*1[X> + Var(X)]’

As indicated above, when §' is a deflator the bias in b depends on the moments of
G which cannot be characterized in terms of the distributions of S and §’. Thus,
we do not present a formula for the difference in bias between the two
alternatives and base our analysis on simulations.

17 Our model 5 ERC estimate, 2.93, differs substantially from Kothari and
Zimmerman’s (1995), 6.55. One possible explanation is that, consistent with table
7, the true standard errors are much larger than those estimated, and Kothari and
Zimmerman'’s sample of 38,890 observations results in more estimation efficiency
than our sample of 1,906. However, sample sizes as large as Kothari and
Zimmerman's are not common in accounting research.

18 Inferences are unaltered when book value of equity or total assets (net income or
total assets) is an additional independent variable in model 5 (2).

19 That coefficient bias attributable to scale is more problematic in the securities
gains and losses specifications, models 4-6, than in the investment securities
specifications, models 1-3, is not unexpected given the correlations among the
variables. Untabulated correlations indicate book value of equity and net income
are more highly correlated with the scale proxies, book value of equity, net
income, operating revenue, and total assets, than are the difference between fair
and book values of investment securities and unrealized securities gains and
losses. However, correlations between book value of equity and the scale proxies
range from 1.87 to 2.42 times those of the difference between fair and book
values of investment securities, whereas correlations between net income and the
scale proxies are only 1.49 to 1.69 times greater than those of unrealized
securities gains and losses.

20  We cannot explain why we observe coefficient bias for the larger, but not smaller,
sample. However, section two suggests that the deflator’s coefficient of variation
affects bias. In the larger sample, the deflator’s, TA, coefficient of variation is
3.56, which is higher than that in the smaller sample, 1.92. However, as noted in
section two, the deflated coefficient’s bias is complex and coefficients of
variation are not unambiguous indicators of bias severity, particularly across
samples. For example, in the Barth (1994) sample, the deflator’s, NI, coefficient
of variation is lower than that of 7A in the smaller Sougiannis (1994) sample,
1.30, and vet in the Barth application, using N/ as a deflator appears to result in
coefficient bias.

21 X! and X2 are simulated as follows for cases i-v.

i XI=50%Z2+ 100; X2 = 50*Z3 + 100.
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i X1 =3535*Z1 + 35.35%¥Z2 +100; X2 = 35.35*7Z1 + 35.35*Z3 +100.

il X7 =50%Z2 + 80.896: X2 = 50%Z3 + 35.

v X1 =3535*Z1 + 35.35%72 + 80.896; X2 = 35.35*%Z1 + 35.35*Z3 + 35.

v X1 =0.005402*(BVE - 3,181) + 43.301*Z2 + 100; X2 = 0.005402*(BVE -
3,181) + 43.301*Z3 + 100, where Z1-Z3 are independent standard normal
random variables.

22 We estimate models 6 and 7 to provide some evidence on this question. Model 6
(model 7) includes the true scale factor (a scale proxy) as an independent variable
to mitigate coefficient bias and deflates by a scale proxy to mitigate
heteroscedasticity. The findings reported there indicate that deflation by a scale
proxy is not effective at mitigating heteroscedasticity, except in model 6 when the
standard deviation of S - ' is proportional to S.

23 Note that using weighted least squares. WLS, and deflating the dependent
variable and all independent variables including the intercept are equivalent.
These techniques are potential remedies for heteroscedasticity but are not
remedies for scale-related coefficient bias.

24 For example, Miller and Modigliani (1966) reject one deflator, after-tax firm
value, V-tD, as likely to introduce spurious correlation but accept another, total
assets. However as Lev and Sunder (1979) clarify, deflation does not cause
spurious correlation simply because the same variable appears in the denominator
on both sides of the regression equation. A regression coefficient is biased only if
the regressor is correlated with the error. Miller and Modigliani reject V-tD
because it is the dependent variable and hence correlated with the undeflated
error. Christie’s (1987) statement that any deflator other than a function of the
independent variables potentially introduces specification error suggests the same
reasoning. Findings sensitive to deflator choice suggest potential for spurious
correlation (e.g., Lustgarten 1982; Olsen 1985).

25 To see that Se/S’ is uncorrelated with X/§" if ¢ is independent of S and S’

(and therefore also 1/5"), let §"=1/5". Then Cov(§"Se, §"X)

= E((S"Se - E(§"Se)) (5"X - E(S"X))

E((S"Se)(S"X)) because E(S"Se) = E(S"S)E(e) =0

E(e)E(S"25X) because E(XY) = E(X)E(Y) if X and Y are independent
=0 because E(e) =0.

Our simulations confirm the unbiasedness of coefficient estimates in regressions

using deflated variables. Correlations between §' and higher moments of ¢ can

induce econometric problems other than coefficient bias, such as
heteroscedasticity.

26 We use simulations to assess the ratio of estimated to true standard errors because
although the ratios can be estimated using formulas developed in Appendix 3,
their variability cannot. Christie (1987, section four) provides evidence on
understatement of reported standard errors by relating time series variation of
reported coefficient estimates to mean reported standard errors from successive
cross-sectional estimations. He also finds that reported standard errors can
severely understate true standard errors. However, his procedure requires several
time series observations and assumptions about coefficients’ time series
properties. Also, Griliches and Hausman (1986) show how exploiting panel data
can mitigate effects of omitted variables such as scale. We focus on only one
cross-sectional regression and do not explore the Griliches and Hausman
techniques because time series properties of estimators are beyond this study’s
scope.

27 Fiandings with error variances proportional to X are similar to those reported
except, as expected from estimations reported in Appendix 3, differences among

1
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estimates usually are smaller in the untabulated simulations. As in section three,
we base all simulations on four CompusTAT samples. Although we report summary
statistics for only the 500-firm sample, untabulated summary statistics for the
other samples are similar to those reported unless noted.

To assess validity, we estimated market value of equity on book value of equity
and on net income for our four CompusTat samples. In six of eight cases, the
assumption that the weights are proportional either to X or X? (tested by
regressing the logarithm of squared residuals on X and the squared logarithm of
X, [Park 1966]) cannot be rejected.

For the 100-firm sample, White standard errors are only about 60 percent of true
standard errors. The relatively poor performance of White standard errors in this
sample largely is attributable to variation in scale within the sample and not to
small sample size. Recall that the 100-firm sample is selected randomly from the
500-firm sample. When we repeat the simulations on the smallest and largest 100
firms in the 500-firm sample, White standard errors are much closer to true
standard errors. In the sample of smallest firms, the mean ratios are 0.925 and
0.972 when X = NI and X = BVE. For the largest firms, they are 0.870 and 0.852.
For the 100-firm sample, the ratio of White deflated to White undeflated standard
errors consistently exceeds the corresponding ratio of true standard errors unless
NUMSHR is the deflator, indicating that White standard error ratios generally
understate efficiency gains for the smallest sample.

We estimate, but do not tabulate, similar equations using total assets as a scale
proxy. Its coefficient insignificantly differs from zero in all specifications.

We eliminate 32 observations with a noticeable effect on the reported findings.
However, findings from eliminating observations greater than three standard
deviations from their mean are similar to those reported.

Barth’s analogous regressions include as independent variables book values of
equity before investment securities and investment securities (net income before
securities gains and losses and realized securities gains and losses). For the sake
of parsimony, we combine these into a single variable, book value of equity (net
income).

If sample firms each are formed by merging a varying number of firms, scale will
have a range of values, not only two. Also, we do not consider situations when
the coefficient, b, varies cross-sectionally with scale, for example, if factors such
as risk, growth, and tax status affect b, and are linearly related to scale. In such
cases, the correctly-specified regression equation is different from the one
described above.

To see that scale differences among sample observations cause coefficient bias
and heteroscedasticity, consider two large firms each comprising two small (unit)
firms, for example, merge firm i = | with i = 2 and i = 3 with i = 4. These firms’
equity values can be expressed as (MVE; + MVEi,;) = 2a + b (NI; + Nl 1)+ (ei +
ei+1), i = 1 and 3. Each has scale of two. Estimating this regression yields an
unbiased estimate of b, and an intercept whose expectation equals 2a. That the
estimated intercept is 2¢ rather than a is of concern only if hypotheses are about
the intercept’s magnitude. Moreover, the errors are homoscedastic if the e;’s have
equal variance, and the covariance of e; and e; equals that of e; and e4.
Assuming the observed variable equals $°X is equivalent to assuming that the unit
firms’ X values are perfectly correlated. 1If, instead, the correlation is zero, then
the bias likely will be smaller than that calculated from equation 4. Also, zero
correlation between unit firms’ error terms causes the error variances in the
regression using observed variables to be proportional to S rather than $°. In that
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case, deflating observed variables—dependent and independent—by §
overcorrects for heteroscedasticity.

36 To derive equation A2 set w;i = k X{ = k (x; + X )* in equation A1, and use
formulas for variance, skewness, and kurtosis.

37 The comparative statics assume changes in one moment of the distribution do not
affect other moments, which is not valid for many common distributions. In such
cases, interdependencies need to be considered in determining effects on the ratio
of estimated to true variance of changes in moments.
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